
Frontiers in Immunology | www.frontiersin.

Edited by:
Dimitrios Petrou Bogdanos,

University of Thessaly, Greece

Reviewed by:
Maria Serena Longhi,

Beth Israel Deaconess Medical Center
and Harvard Medical School,

United States
Shailendra Giri,

Henry Ford Hospital, United States

*Correspondence:
Nitin J. Karandikar

nitin-karandikar@uiowa.edu
orcid.org/0000-0002-6867-6950

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 01 June 2020
Accepted: 02 October 2020
Published: 28 October 2020

Citation:
Renavikar PS, Sinha S, Brate AA,

Borcherding N, Crawford MP,
Steward-Tharp SM and Karandikar NJ

(2020) IL-12-Induced Immune
Suppressive Deficit During
CD8+ T-Cell Differentiation.
Front. Immunol. 11:568630.

doi: 10.3389/fimmu.2020.568630

ORIGINAL RESEARCH
published: 28 October 2020

doi: 10.3389/fimmu.2020.568630
IL-12-Induced Immune Suppressive
Deficit During CD8+ T-Cell
Differentiation
Pranav S. Renavikar , Sushmita Sinha, Ashley A. Brate , Nicholas Borcherding,
Michael P. Crawford, Scott M. Steward-Tharp and Nitin J. Karandikar*
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Autoimmune diseases are characterized by regulatory deficit in both the CD4+ and CD8+
T-cell compartments. We have shown that CD8+ T-cells associated with acute relapse of
multiple sclerosis are significantly deficient in their immune suppressive ability. We
hypothesized that distinct CD8+ cytotoxic T-cell (Tc) lineages, determined by cytokine
milieu during naïve T-cell differentiation, may harbor differential ability to suppress effector
CD4+ T-cells. We differentiated purified human naïve CD8+ T-cells in vitro toward Tc0
(media control), Tc1 and Tc17 lineages. Using in vitro flow cytometric suppression assays,
we observed that Tc0 and Tc17 cells had similar suppressive ability. In contrast, Tc1 cells
showed significant loss of suppressive ability against ex vivo CD4+ T-cells and in vitro-
differentiated Th0, Th1 and Th17 cells. Of note, Tc1 cells were also suboptimal in
suppressing CD4-induced acute xenogeneic graft versus host disease (xGVHD) in vivo.
Tc subtypes derived under various cytokine combinations revealed that IL-12-containing
conditions resulted in less suppressive cells exhibiting dysregulated cytotoxic
degranulation. RNA sequencing transcriptome analyses indicated differential regulation
of inflammatory genes and enrichment in GM-CSF-associated pathways. These studies
provide insights into the role of T-cell differentiation in CD8 suppressive biology and may
reveal therapeutically targetable pathways to reverse suppressive deficit during immune-
mediated disease.
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INTRODUCTION

As key regulators of the immune response, T-cells can serve both causative and protective roles
during immune-mediated damage (1–8). Studies from our group and others have demonstrated an
immunoregulatory and disease-suppressive function for CD8+ T-cells in both the autoimmune
disease multiple sclerosis (MS) and its animal model (EAE) (9–20). Similar evidence has
accumulated in the context of autoimmune diseases such as type 1 diabetes, colitis, SLE-like
disease, Graves' disease, among others (21–25). These regulatory CD8+ T-cells function, in part,
through suppression of autoreactive CD4+ responses (9, 14, 26–28).

Studies in MS point to a change in immune dynamics during disease relapse periods. We have
demonstrated that acute MS relapses are characterized by a substantial deficit in the suppressive
org October 2020 | Volume 11 | Article 5686301
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ability of patients’ CD8+ T-cells, as well as an increased
resistance of patients’ CD4+ T-cells to suppression (29).
Intriguingly, these functional deficits normalize during disease
remission (30). This suggests that the relapse-associated
inflammatory cytokine environment could influence CD8+
T-cells’ suppressive ability.

Similar to CD4+ T-helper (Th) cell subsets, lineages for CD8+
cytotoxic T-cells (Tc), such as Tc0 (media control), Tc1 (IL-2, IL-
12, and anti-IL4), Tc17 (IL-6, IL-1b, TGF-b, anti-IL4, and anti-
IFNg), are predominantly determined by the cytokine milieu
present during differentiation and defined by certain signature
cytokines and transcription factors (31–34). We hypothesized
that differentiation of naïve CD8+ T-cells along these pathways
would result in variable immune-suppressive potential. Using
both in vitro assay systems as well as an in vivo xenogeneic graft
versus host disease (xGVHD) model, we discovered that CD8+
T-cells differentiated toward the Tc1 phenotype had significantly
lower suppressive ability. Importantly, this inhibition was
associated with IL-12-induced dysregulation of degranulation
mechanisms and induction of multiple inflammatory pathways,
revealing potential therapeutic targets for the reversal of the
suppressive deficit.
MATERIALS AND METHODS

Cell Preparation and Bead Sorting
Peripheral blood mononuclear cells (PBMC) from healthy
subjects were isolated from de-identified leukocyte reduction
system (LRS) cones containing leukocyte rich whole blood
from platelet donors at the University of Iowa, DeGowin Blood
Center. PBMC isolation was performed with Ficoll-Paque (GE
Healthcare) density gradient centrifugation and frozen in
DMSO-containing media for further use. Naïve CD8+ T-cells
and/or naïve CD4+ T-cells were isolated from freshly thawed
PBMC [RPMI 1640 (Corning, 10-040-CV) with DNase at
10KU/ml (Sigma D4513-1vl)] with manual LS column
MACS sorting using human naïve CD8+ T-cell isolation kit
(Miltenyi Biotech 130-093-244) and human naïve CD4+ T-cell
isolation kit (Miltenyi Biotech 130-094-131) respectively
according to manufacturer specifications. Sort purities were
rout ine ly above 95% by flow cytometr i c ana ly s i s
(Supplementary Figure 1A). On the day of suppression
assays, autologous CD4+ CD25- cells were sorted from
thawed PBMC using human CD4+ T-cell isolation kit
(Miltenyi Biotech, 130-096-533) and CD25+ microbeads
(Miltenyi Biotech, 130-092-983). T-lymphocyte-depleted
PBMC were used as antigen-presenting cells (APC).

Tc Subset Differentiation
Naïve CD8+ T-cells were sorted from PBMC and resuspended
at 1 × 106 cells/ml in Stemline hematopoietic stem cell
expansion serum-free media (Sigma, S0192), followed by
stimulation in various differentiation conditions (Media
Alone/Tc0, Tc1, and Tc17) (31, 35–37) as follows: (1) Media
Alone/Tc0: no cytokines/antibodies added; (2) Tc1: anti-IL-4 (7
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µg/ml, BD554481), IL-2 (10 ng/ml, BD554603), IL-12 (10 ng/ml,
BD554613); (3) Tc17: anti-IL4 (7 µg/ml), anti-IFNg (7 µg/ml,
BD554698), TGFb1 (10 ng/ml, eBioscience, 14-8348-62), IL-1b
(10 ng/ml, BD554602), and IL-6 (50 ng/ml, BD550071). Cultures
were activated with 0.5 µg/ml each offixed anti-CD3 (eBioscience,
16-0037-85) and anti-CD28 (eBioscience, 16-0289-85) and
incubated for 7 days at 37°C (Similar protocol was followed for
experiments involving naïve CD4+ T-cell differentiation to Th0,
Th1. and Th17 conditions). At day 7, cells were washed twice with
PBS for suppression assay cultures. An aliquot of cells was washed,
re-stimulated and supernatants were aliquoted 48 h later for
ELISA assays. In some experiments, an aliquot of cultured cells
was used for surface markers and intracellular cytokine staining to
assess their state of differentiation.

ELISA
ELISA was performed on supernatants per manufacturer
protocol (eBioscience Human Platinum ELISA Kit for IL-
17A (BMS2017). ELISA data were acquired on a BioTek
Synergy H1 Hybrid Reader. Gen5 v2.09 was used for
software analysis.

Intracellular Flow Cytometric Cytokine
Assays
For surface and intracellular staining on day 7 of in vitro
differentiation, cells were washed and cultured in media with
2 mL/ml of leukocyte activation cocktail with Golgi Plug (BD,
550583) for 5 h, followed by washing with 0.1% (w/v) sodium
azide/phosphate-buffered saline and surface staining with anti-
CD3 APC (BioLegend, 300458) and anti-CD8 BV786 (BD,
563823). In some experiments, anti-CD107a PE-Cy7
(BioLegend, 328617) was added during stimulation with cell
activation cocktail (BioLegend, 423301) and Monensin (BD
Golgi Stop, 554724) (38). Cells were fixed overnight at 4°C
followed by permeabilization using fixation/permeabilization
kit (eBioscience, 00-5523-00). Intracellular staining was
performed using anti-IFNg AlexaFluor700 (BD, 557995),
anti-IL17A PE (eBioscience, 12-7179-42), and anti-Granzyme
B APC (Miltenyi, 130-120-703). All cells were resuspended in
staining buffer [0.1% (w/v) sodium azide/phosphate-buffered
saline] for FACS analysis. Flow cytometric data were
acquired on a 4-Laser, 17-color LSRII using BD FACSDiva
Software v6.1.3 (Firmware v1.9). FlowJo version 9.1 was used
for analysis.

Flow Cytometric Suppression Assays
CD8+ T-cells from the 7-day differentiation were placed in flow
cytometric suppression assays, as described previously (29, 30).
Briefly, responder ex vivo CD4+ CD25- T-cells were sorted or
responder differentiated Th cells were obtained from 7-day
cultures and stained with CFSE, followed by culture with
irradiated APC and 1 µg/ml of soluble anti-CD3 (eBioscience,
16-0037-85) in the presence or absence of cultured CD8+ Tc
cells. On day 7 of suppression culture, cells were stained for
anti-CD3 AlexaFlour700 (BD, 557943), anti-CD8 BV786 (BD,
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563823), anti-CD4 APC (BD, 555349), and anti-CD25 Pacific
Blue (BioLegend, 356130) and flow cytometrically assessed for
CD4+ proliferating fraction (CFSE dilution). % proliferation
and % suppression were calculated as described previously (29).
Xenogeneic Graft-Versus-Host Disease
(xGVHD)
Xenogeneic graft-vs-host-disease (xGVHD) was induced in
female NSG mice (NOD-scid IL2RGnull, strain no. 005557,
Jackson Laboratory), as described previously (39, 40). Briefly,
ex vivo-purified human naïve CD8+ T-cells were first cultured
for 7 days in Tc0 and Tc1 differentiation cultures, as described
above. On day 7, Tc cells were washed, resuspended with PBS,
and injected intravenously into 2 Gy irradiated 6–8-week- old
female NSG mice admixed with ex vivo-sorted allogeneic bulk
CD4+ CD25- T-cells at a 1:1 ratio (10 × 106 CD4 and 10 × 106

CD8 cells/mouse) in the indicated groups. 10 × 106 CD4+ CD25-
T-cells/mouse without CD8+ T-cells (1:0 ratio) served as the
control group. Some mice also received ex vivo-purified bulk
CD8+ T-cells (Miltenyi Biotech, 130-045-201) or in vitro-
differentiated Tc0 or Tc1 cells alone (10 × 106 cells/mouse, 0:1
ratio), representing CD8+ T-cell only groups. Mice were
monitored for weight loss up to 15 days post injection.
Number of mice per experimental group per experimental
replicate is indicated in the figure legend.
RNA Sequencing/Transcriptome Analysis
Aliquot of cultured CD8+ Tc0 and Tc1A-E cells was flash frozen
on day 7, and samples were submitted to the University of
Chicago Genomics facility for RNA processing and sequencing.
Single-end 50 bp sequencing was performed on the Illumina
HiSeq 2000. Pseudoalignment was performed using kallisto (41)
with the GRCh38 human genome build and processed using
sleuth (v0.30) R package (41). Differential gene expression
analysis was performed in the sleuth R package with the Wald
test. Unless noted otherwise, differential genes were defined as
log2-fold change >1 or <-1 and false discovery rate < 0.05. The
significant genes were used for Ingenuity Pathway Analysis
(Qiagen) using the same cut-points for significance as inputs.
Statistics
Graphpad Prism v7.03 (La Jolla, CA) was used for statistical
analyses (tests indicated in figure legends). P < 0.05 was
considered significant. Data represent mean +/- SEM.
Study Approval
All experiments were performed on PBMC obtained from de-
identified leukocyte reduction system (LRS) cones from healthy
platelet donors at the University of Iowa DeGowin Blood Center,
as approved by the University of Iowa IRB. All mice were kept at
the University of Iowa Animal Care Facility under 12-h light/
dark cycle, fed ad libitum, humanely cared for, and studied as
approved by the University of Iowa’s Institutional Animal Care
and Use Committee and in accordance with the National
Frontiers in Immunology | www.frontiersin.org 3
Institutes of Health guide for the care and use of Laboratory
animals (NIH Publications no. 8023, revised 1978).
RESULTS

Naïve-derived Tc1 Cells Are Deficient
in Suppression of CD4+ T-Cell Immune
Responses
We have shown that CD8+ T-cells isolated during acute
relapse of MS are deficient in their ability to suppress
myelin-specific CD4+ T-cell responses (29). Interestingly, the
suppressive ability of patient CD8+ T-cells is regained during
MS remission (30). We hypothesized that distinct categories of
CD8+ cytotoxic T-cell (Tc) lineages may have variable
suppressive function against effector CD4+ T-cell responses
based on the cytokine milieu under which they were
differentiated. To test this hypothesis, we obtained purified
human naïve CD8+ T-cells from healthy donor peripheral
blood mononuclear cells (PBMC) and differentiated them in
vitro under the influence of published cytokine combinations
(31, 35–37, 42–47) toward Tc0 (control), Tc1 and Tc17
lineages. At day 7 of culture, we confirmed via flow cytometry
and cytokine ELISA that the differentiated populations of cells
exhibited the expected functional phenotypes in terms of cytokine
production (Supplementary Figure 1). In particular, we
confirmed that the Tc0 control condition and the Tc1 condition
showed predominantly IFNg production but almost undetectable
IL-17A, whereas the Tc17 conditions exhibited robust IL-17A
production. As expected, Tc1 cells showed significantly higher
proportion of cells with IFNg expression (Supplementary Figure
1). Similar to previous studies from us and others involving
human naïve CD4+ T-cell differentiation (48–50), a small
proportion of the differentiated cells showed the presence of
signature cytokine at the end of this short-term culture.
However, after differentiation in these conditions, other cells
within the culture are also known to show functional effects of
this differentiation, regardless of production of the specific
cytokine (such as IFNg or IL-17A). Therefore, our studies
included the entire population of “Tc1” or “Tc17”-differentiated
cells for functional assessment of their suppressive ability, rather
than focus on those producing specific cytokines. Thus, the entire
Tc0 culture served as an appropriate control for the Tc1 and
Tc17 cultures.

We therefore tested the ability of these differentiated Tc cells
to suppress CD4+ T-cells using in vitro flow cytometric
suppression assays, as described previously (29, 30). For these
assays, ex vivo bulk CD4+ T-cells were stained with CFSE and
served as responder T-cells. The cells were stimulated with
autologous antigen-presenting cells (APC) and aCD3 and
cultured in the presence (or absence) of differentiated
autologous CD8+ T-cells. On day 7 of these suppression
cultures, the proliferation of CD4+ T-cells was quantified
(based on CFSE dilution) and then normalized to the 1:0 “no
suppression” control condition (no CD8+ T-cells). As shown in
October 2020 | Volume 11 | Article 568630
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Figures 1A, B, we observed that cells from Tc0 and Tc17 cultures
had comparable suppressive ability. In contrast, cells from Tc1
cultures showed significantly less suppressive ability against bulk
CD4+ T-cells.

We further tested this hypothesis by first generating various
Th lineages from CD4+ T-cells and using these as responder cells
in suppression assays. Thus, ex vivo-purified naïve CD4+ T-cells
were cultured for 7 days in the presence of conditions similar to
those used for CD8+ T-cells to obtain Th0, Th1, and Th17 cells.
These cells were then stained with CFSE and subjected to
suppression by autologous naïve-derived Tc0, Tc1, or Tc17
cultures. Similar to our findings with bulk ex vivo CD4+ T-
cells, we found that cells from Tc0 and Tc17 cultures showed
similar suppressive ability against all three Th lineages (Figure
1C). Again, Tc1-differentiated cells showed deficient suppressive
ability against these Th cells. Therefore, based on these in vitro
findings, we focused the rest of our studies on understanding the
Frontiers in Immunology | www.frontiersin.org 4
mechanisms responsible for reduced suppressive ability of cells
from Tc1 cultures against bulk ex vivo CD4+ T-cells.
Cells From Tc1 Differentiation Conditions
Are Suboptimal at Suppressing CD4+ T-
Cell-Induced Xenogeneic GVHD In Vivo
In order to validate our findings from the in vitro suppression
assays, we utilized an acute xGVHDmodel using irradiated NOD-
SCID-Gamma (NSG) immunodeficient mice, as described
previously (40, 51). Thus, ex vivo-purified bulk human CD4+ T-
cells were transferred into irradiated NSG mice, either with or
without CD8+ T-cells differentiated in Tc0 or Tc1 conditions.
Mice were then monitored for induction of acute xGVHD using
weight loss as the primary parameter (40, 51–54).

We observed that transfer of ex vivo-purified bulk CD8+ T-
cells or naïve-derived, in vitro-differentiated Tc0 or Tc1 cells did
A

B

C

FIGURE 1 | Tc lineages differ in their functional ability to suppress CD4+ immune responses. Cells obtained from Tc0, Tc1, and Tc17 cultures were assessed for
suppressor ability against autologous CFSE-stained, ex vivo-sorted bulk CD4+ CD25- T-cells (A, B). Panel (A) shows representative flow cytometric plots
demonstrating proliferation of CD4+ T-cells in the presence or absence of indicated Tc cells. Numbers indicate the proportion of cells within the proliferating fraction
on day 7 of suppression assay. % suppression was calculated from the proliferation data. Panel (B) shows cumulative suppression data, indicating significantly
decreased suppression by Tc1 cells (n = 10 independent samples). In Panel (C) ex vivo-sorted naïve CD4+ T-cells were first differentiated along Th0, Th1, and Th17
lineages for 7 days and then stained with CFSE and subjected to suppression assays using autologous differentiated Tc0, Tc1 and Tc17 cells (n = 5 independent
samples). For all three Th types, suppression was normalized to the Tc0 control group and in every case, Tc1 suppression was significantly reduced compared to
the Tc0 control. *p < 0.05 and **p < 0.01; paired t test.
October 2020 | Volume 11 | Article 568630
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not result in disease (Figure 2A). In contrast to bulk or
differentiated CD8+ T-cells, bulk CD4+ T-cells resulted in
robust disease, as expected (Figure 2B). Of note, similar to our
findings from in vitro suppression assays, the addition of cells
from Tc0 control conditions resulted in robust suppression of
xGVHD (Figure 2B). Interestingly, cells from Tc1 cultures were
significantly deficient in their capacity to suppress CD4+
T-cell-driven disease (Figure 2B), matching with their deficit
in in vitro suppression (Figure 1). We quantified % disease
suppression on days 9, 12, and 15 by comparing % change in
weight for the CD4+ T-cell only control group against CD4+Tc0
and CD4+Tc1 groups, normalizing to the Tc0 suppression as
100%. There was strong disease suppression in both the groups
by day 9. However, the CD4+Tc1 group progressively lost disease
suppressive capability (Figure 2C). The experiments were
terminated by days 15–18 due to significant weight loss in the
control group. These results showed that while cells from the Tc0
control cultures efficiently suppressed CD4+ T-cell driven
Frontiers in Immunology | www.frontiersin.org 5
pathology in vivo, cells from Tc1 cultures had an intrinsic
suppressive defect.
Exposure to IL-12 During CD8+ T-Cell
Differentiation Results in Suboptimal
Suppressive Ability With Dysregulated
Induction of Cytotoxicity-Related
Molecules
We next asked whether the functional differences in Tc1 CD8+
T-cells can be attributed to specific cytokines that they are exposed
to during their differentiation. In the Tc1 differentiation condition,
IL-12 was the dominant pro-inflammatory cytokine and seemed
potentially accountable for mediating the loss of suppressive ability.
We tested this hypothesis by setting up 6 different CD8+ T-cell
culture conditions (Figure 3A). Thus, in addition to the media
control (Tc0) and the standard Tc1 condition (now designated Tc1-
A), we added 4 other variations that included different
combinations of the same factors (IL-2, IL-12 and anti-IL-4).
First, we utilized these differentiated CD8+ T-cells from all 6
conditions in suppression assays against autologous CD4+ T-cells.
We observed that the 4 conditions that contained IL-12 (Tc1A-D)
resulted in a significant loss of suppressive ability, when compared
to the Tc0 condition (Figure 3B). When we grouped the conditions
as containing or not containing IL-12, this confirmed that the
populations exposed to exogenous IL-12 showed significantly lower
suppressive ability (Figure 3C).

In order to investigate the cytotoxic potential of these cells, they
were surface-stained for the degranulation marker lysosomal-
associated membrane protein 1 (LAMP1 or CD107a) (38, 55–57),
followed by intracellular staining for the cytotoxic molecule,
granzyme B (GzB). As shown in Figure 3D, the IL-12-exposed
group exhibited a significantly greater proportion of dual-positive
(granzyme B+CD107a+) cells compared to the group not exposed
to IL-12 (including Tc0). In prior work, we have shown that
suppressive ability of CD8+ T-cells is linked with their cytotoxic
functions (9, 30). Therefore, it was somewhat unexpected that
suboptimally suppressive Tc cells would show a greater
proportion of cells expressing granzyme B. We therefore
evaluated the two properties (degranulation vs. granzyme
production) individually by quantifying single-positive and total-
positive cells for each marker (representative dot plots shown in
Supplementary Figure 2A). In this analysis, we saw that cells from
IL-12-containing cultures showed significantly greater proportion of
cells producing granzyme B, quantified either as single positive
(Figure 3E) or as total positive (Supplementary Figure 2B), but
demonstrated a significant reduction in the proportion of cells
expressing surface CD107a (Figure 3F and Supplementary Figure
2B). Additionally, in linear regression analysis, whereas the cells
from the IL-12(-) cultures demonstrated the expected positive
correlation between suppression and degranulation, such
correlation was lost in IL-12(+) cultures (Supplementary Figure
2C). Collectively, these findings suggest that exposure of naïve
CD8+ T-cells to IL-12 may result in enhanced production of
cytotoxic molecules but an inhibition in the granule transport and/
or degranulation machinery, potentially translating to a reduced
cytotoxic/suppressor capacity.
A

B

C

FIGURE 2 | Naïve-derived Tc1 cells have deficient ability to suppress xGVHD
in vivo. xGVHD was induced in 6–8-week-old female NSG mice by injecting
bulk ex vivo-purified CD4+CD25- human T-cells with or without in vitro-
generated, naïve-derived Tc0 (control), and Tc1 cells at a ratio of 1:1 (10 million
cells each). Mice were monitored for weight loss over 15 days. Panels (A, B)
show % weight (normalized to day 0) ± SEM. Panel (A) represents absence of
xGVHD when only CD8+ T-cells were injected, either as ex vivo-purified bulk
CD8+ T-cells (two independent replicates; n = 5 mice) or as in vitro-
differentiated Tc0 or Tc1 cells (1 experiment, n = 3 mice each). Panel (B)
demonstrates CD4-induced xGVHD with CD4+ T-cells alone or admixed with
indicated Tc cells (two independent replicates; n = 6 mice per group). Panel (C)
shows the same data represented as calculated % disease suppression on d9,
d12, and d15 normalized to the Tc0 control group designated as “100%
suppression”. *p < 0.05 and ****p < 0.0001; n.s., not significant. (A, B) Two-
way ANOVA using Tukey’s multiple comparisons test and (C) unpaired t-test.
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Transcriptome Analysis of Naïve-Derived
Tc Lineages Reveals Potentially
Targetable Pathways to Reverse the IL-12-
Induced Suppressive Deficit
In an effort to dissect out the mechanisms responsible for these
IL-12-induced functional changes, we differentiated naïve CD8+
T-cells for 7 days in various conditions depicted in Figure 3A,
followed by RNAseq transcriptome analysis. We then compared
differential gene expression between the groups that received or
did not receive IL-12 during differentiation. First, we asked
whether there was any evidence of greater apoptotic potential
Frontiers in Immunology | www.frontiersin.org 6
among the IL-12-exposed cells that could explain their inability
to optimally suppress their targets. As shown in Supplementary
Figure 3, we did not observe any significant differences in either
pro-apoptotic (BCL2L11/Bim, BID, and BAD) or pro-survival
factors (BCL2 and BCL2L1/Bcl-xl) (58).

Next, we asked which genes were differentially regulated in the
IL-12(+) group, relative to the IL-12(-) group. Figure 4A shows a
volcano plot of differentially expressed genes (451 significantly
upregulated shown in red and 441 significantly downregulated
shown in blue), with the top 10 significantly up- and
downregulated genes shown in the bar graphs. In addition to
evaluating the two broad groups, IL-12(+) and IL-12(-), we also
A
B

D

E F

C

FIGURE 3 | Exposure to IL-12 induces CD8+ T-cells characterized by suboptimal suppressive ability with dysregulated induction of cytotoxicity-related molecules.
Six different culture conditions (A) were used to differentiate ex vivo-purified naïve CD8+ T-cells. On day 7, these Tc cells were assessed for suppressor ability
against autologous CD4+CD25- T-cells. Panel (B) demonstrates %suppression for each of the conditions. Panel (C) shows the same data combined into two
groups: cultures containing IL-12 (n = 12) and those without (n = 6). In parallel, cells from the 7-day cultures were stimulated with BioLegend Cell Activation cocktail
with Monensin and anti-CD107a for 5h followed by intracellular staining for granzyme B. %GzB+CD107a+ dual positive CD8+ T-cells were quantified within the
indicated groups (D), as were GzB+ (E) and CD107a+ (F) single-positive cells. **p < 0.01 and ***p < 0.001. (B) One-way ANOVA and (C–F) Mann-Whitney test.
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compared differential expression between each of the IL-12-
containing experimental conditions, relative to the Tc0 control
(Supplementary Figure 4). In this manner, we were better able to
tease out the specific effects of IL-12 within our in vitro system.
Across all four comparisons, we saw a number of genes significantly
up- and downregulated. The 31 common genes upregulated and 19
common genes downregulated between individual comparisons are
represented in heatmaps in Supplementary Figure 4. Importantly,
we performed Ingenuity Pathway Analysis (IPA) by utilizing the
differential expression comparisons between IL-12-exposed (non-
suppressive) group versus the IL-12-unexposed (suppressive) group.
We saw 25 canonical pathways significantly upregulated in the IL-
12(+) non-suppressive group (Figure 4B). IPA also performs
estimated enrichments for upstream regulators of distinct genetic
programs. We examined the upstream regulators with increased
and decreased enrichment (Figure 4B and Supplementary Figure
5) across the IL-12(+) group. Interestingly, we found the highest
increase in genetic expression patterns associated with the cytokine
GM-CSF (Csf2), among other cytokines and transcription factors.
These results suggested that IL-12 could act directly on naïve CD8+

T-cells to induce GM-CSF-related pathways.
Frontiers in Immunology | www.frontiersin.org 7
Finally, in the context of our findings related to the disconnect
between the production of granzyme B vs degranulation (Figure
3), we directly evaluated whether any of the genes associated with
cytotoxicity and degranulation were different between the two
groups. We observed significant differences in IFNG, GZMB,
STX11, VAMP7, and LYST genes (Supplementary Figure 6).
Corroborating our flow cytometry data, we found upregulation
of IFNG and GZMB in the IL-12(+) group. There were no
differences in message for CD107a or perforin. Interestingly,
the LYST gene was significantly downregulated in IL-12-exposed
cells (Supplementary Figure 6). The function of LYST
(lysosomal trafficking regulator) is incompletely understood,
but its mutation is known to cause Chediak-Higashi syndrome
and some forms of hemophagocytic lymphohistiocytosis,
characterized by defective lymphocyte degranulation due to
changes in the morphology and function of secretory
lysosomes (59–62). It is thought to be required for the
maturation of cytotoxic granules into exocytosis-competent
secretory granules (59), and therefore, the downregulation of
this gene may offer a mechanistic explanation for the inhibited
degranulation seen in Figure 3.
A

B

FIGURE 4 | Transcriptome analysis reveals potentially targetable genes and pathways to reverse IL-12-induced suppressive deficit. RNAseq analysis was performed
on 7-day differentiated Tc subtypes shown in Figure 3A. Panel (A) shows significant differential genes in the IL-12(+) (“non-suppressive”) group when compared
against IL-12(-) (suppressive) group. Significant defined as log2-fold change > 1 or < -1 and adjusted p-value < 0.05. Top 10 significant differential genes upregulated
(red) or downregulated (blue) as defined by log2-fold change are shown. Panel (B) depicts the IPA analysis of upregulated canonical pathways and upregulated
predicted upstream regulators in the IL-12(+) (non-suppressive) group with z-score as bar charts and points as –log10(p-values).
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DISCUSSION

Several studies from our group and others have underscored the
importance of CD8+ T-cells as regulators of destructive effector
CD4+ T-cell responses during immune-mediated disease (8, 9,
14, 26). In these situations, deficient CD8-mediated regulation
may be associated with greater disease severity, such as relapses
of multiple sclerosis (29, 30). Therefore, it is critical to
understand the genesis of such regulatory deficiency in order
to devise intervention strategies.

In the current study, we addressed the hypothesis that
cytokine-milieu-driven differentiation of CD8+ T-cells along
various lineages results in differential ability to regulate effector
CD4+ T-cell responses. While dissecting this biology, we have
uncovered several fundamental concepts. First, we show that
CD8+ T-cells differentiating under “Tc1 conditions” are
significantly inhibited in their ability to suppress CD4+ effector
T-cells, compared to either Tc0 controls or cells cultured under
Tc17 conditions. Importantly, we show this using not only in
vitro suppression assays but also in an in vivo model of
xenogeneic GVHD in humanized NSG mice, validating the
disease relevance of this finding. Further, we demonstrate that
IL-12 exposure is the main driver of this phenotype and likely
influences CD8+ suppressor function through induction of a
dysregulated degranulation process affecting cytotoxicity.
Finally, we conduct transcriptome analysis of these
differentiated Tc cells, revealing the induction of multiple pro-
inflammatory pathways, which could be potentially targetable for
disease intervention. These hypothesis-generating data can help
hone future investigation in the context of multiple
clinical settings.

The inflammatory role of IL-12 revealed in the mid-1990s
provided the rationale to develop the human IL-12-neutralizing
antibodies, such as ustekinumab and briakinumab, which have
been evaluated in a number of immune-mediated diseases like
psoriasis, rheumatoid arthritis and multiple sclerosis, with
psoriasis seeing the most advanced clinical development (63).
High levels of IL-12 are detected in the aqueous humor, serum and
synovial fluid of patients with different autoimmune conditions
like autoimmune uveitis, multiple sclerosis and rheumatoid
arthritis and are correlated with disease activity (64–67). This
underscores the involvement of IL-12 in modulating immune-cell
subsets in autoimmune diseases. Our findings suggest that IL-12
may exert its “pro-inflammatory” role, partly through inhibition of
immune suppressive mechanisms. In particular, we observed that
IL-12-induced Tc1 cells were suboptimal inhibitors of pathogenic
CD4+ T-cells. This also speaks to a fundamental aspect of Tc1
differentiation wherein acquisition of certain effector functions is
associated with inhibition of regulatory function.

In the current study, our in vitro differentiation cultures
contained purified CD8+ T-cells, devoid of other immune cell
types, such as APC or other lymphocytes. Therefore, our
observations provide insights into a CD8+ T-cell-intrinsic
processes downstream of IL-12 signaling in the context of
global anti-CD3/anti-CD28-mediated stimulation. Some of our
prior studies that have utilized PBMC cultures and specific
Frontiers in Immunology | www.frontiersin.org
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autoantigens for the generation of autoregulatory CD8+ T-cells
have shown the ability for IL-12 to enhance the ability of these
cells to modulate autoantigen-specific effector responses (30).
These differences suggest pleiotropic effects of this cytokine
based on the overall immune environment, strength of
antigenic stimulus and potentially the dose of cytokines in the
inflammatory microenvironment. It will be important to dissect
these features in future studies.

In a recent report, we have shown that naïve CD4+ T-cells
attain distinct levels of resistance to CD8-mediated suppression
(50). There we observed that “Th1” conditions rendered CD4+
T-cells more sensitive to suppression, whereas Th17 conditions
resulted a cells that were significantly resistant to suppression. It
is interesting that distinct cytokine milieus are responsible for
inducing CD4 resistance (Th17 conditions) vs. CD8 suppressive
deficit (Tc1 conditions). It will be critical to understand how
various immune cell types respond within co-cultures that mimic
a common set of in vivo inflammatory signals.

In the current study, we performed RNAseq and
transcriptome analysis to gain insights into the mechanistic
changes that may influence immune-suppressive behavior.
First, we confirmed that pro-apoptotic (BCL2L11/Bim, BID
and BAD) and pro-survival (BCL2 and BCL2L1/Bcl-xl) factors
(58) were not altered in IL-12-induced Tc1 cultures
(Supplementary Figure 3). Next, we looked at IL-12-
mediated effects on maintaining cellular proliferation and
activation. Prior studies have shown IL-12 to promote the
expression of cell cycle associated transcripts, enhancing
division of activated CD8+ T-cells by maintaining IL-2
signaling in vivo (58). IPA analysis of our in vitro data
revealed cell-cycle related pathways like ‘estrogen mediated S
phase entry’ significantly upregulated in IL-12(+) culture group
(Figure 4B), and we also found Tc1 cultures to express the
greatest proportion of CD25+ cells at the end of suppression
assays (data not shown). We looked at modulation of markers
associated with terminal differentiation and exhaustion and
observed significant downregulation of CD160 and CTLA-4
whereas significant upregulation of LAG3 in IL-12-induced Tc1
cultures (Supplementary Figure 7).

In addition, we observed upregulation of several pro-
inflammatory pathways in Tc1 cells, with an interesting
involvement of GM-CSF and its associated pathways – NF-kB,
MAPK, HMGB1 in the IL12-exposed non-suppressive groups.
The role of CD4+ T-cell-derived GM-CSF has been implicated in
autoimmune tissue inflammation in mouse models of
neuroinflammation, arthritis, and myocarditis (68–71). Murine
Th17 cells were identified as the chief source of GM-CSF, however
multiple mouse and human studies have shown IL-12 to modulate
Th1 cells and produce GM-CSF via an IL-23-independent
pathway (72, 73). GM-CSF+ CD8+ T-cells have been shown to
predominate in MS lesions (74). However, the role of CD8+
T-cell-derived GM-CSF and its regulation remains poorly
understood. Our studies indicate activity of GM-CSF-related
pathways in IL-12-differentiated human CD8+ T-cells, which
will be an interesting aspect of future investigation, including
whether this has a bearing on their disease regulatory role.
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Finally, we evaluated the status of cytotoxic pathways in IL-12-
induced Tc1 cells. We have shown in prior studies that
CD8-mediated suppressor function relies on granzyme- and
perforin-mediated cytotoxic killing of pathogenic CD4+ T-cells
or pro-inflammatory APCs in autoimmune disease, both in mice
and humans (9, 26, 29, 30). Therefore, we quantified granzyme B
production as well as degranulation (as measured by surface
CD107a) in Tc1 cells. While we observed higher proportion of
granzyme B/CD107a double-positive cells within IL-12 exposed
Tc1 populations, upon looking at these two properties
individually, we saw that IL-12(+) cultures produced robust
granzyme B, but demonstrated a significant reduction in surface
CD107a expression (Figures 3E, F and Supplementary Figure
2B). Additionally, in a linear regression plot, the IL-12(-) cultures
demonstrated a positive correlation between suppression and
degranulation. Interestingly, this correlation was lost in IL-12(+)
cultures with notable phenotypic clustering (Supplementary
Figure 2C). Thus, it seems plausible that exogenous IL-12
within the microenvironment may render dysfunction in the
granule transport and/or degranulation machinery leading to
cytotoxic molecules being held up within the CD8+ Tc1-cell. In
contrast, Tc0 cells may efficiently pump cytotoxic content outside
the cells upon activation. We attempted to corroborate this
functional observation within our transcriptome data. Of the
various cytotoxicity-related genes (including perforin and
CD107a), we found significant differences in IFNG, GZMB,
STX11, VAMP7, and LYST genes. Importantly, granzyme B
message was significantly higher in the IL-12-exposed group,
with significant downregulation of LYST gene, which functions
as a lysosomal trafficking regulator in lymphocytes (59).
This discordant behavior in CD8+ T-cells has been shown in
disorders associated with mutations in LYST gene like Chediak-
Higashi syndrome and some forms of hemophagocytic
lymphohistiocytosis (62, 75), characterized by defects in proteins
regulating cytotoxic lymphocyte degranulation and shown to
reduce surface CD107a expression (76–78). Surface CD107a has
also been shown to protect NK cells from degranulation-
associated damage (79). Overall, our studies indicate a novel
angle of IL-12 acting directly on naïve CD8+ T-cells to induce a
phenotype characterized by deficient immune-suppressive
behavior, which may be the result of dysregulated cytotoxicity/
granule transport. Prior studies have shown that this defect could
be rescued by expression of effectors of lytic granule exocytosis,
like Munc-13-4, Rab27a and Slp3 in cytotoxic T-lymphocytes (59).
This may lead the way for potential translation of these types of
interventions as a therapeutic strategy for autoimmune diseases.

To summarize, we have shown the novel finding that IL-12-
mediated Tc1 differentiation results in reduced immune
Frontiers in Immunology | www.frontiersin.org 9
suppressive ability in CD8+ T-cells and have demonstrated
plausible mechanistic explanations which will provide the basis
for future investigation.
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